############################ Creating Measurement Classes ############################ The :class:`lsst.validate.drp.base.MeasurmentBase` abstract base class defines a standard interface for writing classes that make measurements of metrics. The :class:`~lsst.validate.drp.base.MeasurementBase` base class ensures that measurements, along with metadata about the measurement, can be serialized and submitted to the QA database and SQUASH dashboard. This page covers the usage of :class:`~lsst.validate.drp.base.MeasurementBase` for creating measurement classes. A Minimal Measurement Class =========================== At a minimum, measurement classes must subclass :class:`~lsst.validate.drp.MeasurementBase` and provide some metadata as instance attributes, such as the name of metric being measured and units of the measurement. This example is a basic template for a measurement: .. code-block:: python class PA1Measurement(MeasurementBase): metric = None value = None units = 'mmag' label = 'PA1' def __init__(self): MeasurementBase.__init__(self) self.metric = Metric.fromYaml(self.label) # measurement code # ... self.value = 0 # Scalar value from measurement code In a measurement class, the following metadata attributes must be specified (their presence is required by the :class:`~lsst.validate.drp.base.MeasurementBase` abstract base class): :attr:`~lsst.validate.drp.base.MeasurementBase.label` The name of the metric. :attr:`~lsst.validate.drp.base.MeasurementBase.metric` A :class:`~lsst.validate.drp.base.Metric` object. In this example, the :meth:`~lsst.validate.drp.Metric.fromYaml` class method constructs a :class:`~lsst.validate.drp.base.Metric` instance for PA1 from the :file:`metrics.yaml` file built into ``validate_drp``. :attr:`~lsst.validate.drp.base.MeasurementBase.units` Units of the metric measurement. As in the :class:`~lsst.validate.drp.base.Datum` class, ``units`` should be an ``astropy.units``-compatible string. The purpose of a measurement class is to make a make a measurement; those calculations should occur in a measurement instance's ``__init__`` method. Any data required for a measurement should be provided through the measurement class's ``__init__`` method. The measurement result is stored in a :attr:`~lsst.validate.drp.base.MeasurementBase.value` attribute: :attr:`~lsst.validate.drp.base.MeasurementBase.value` The value attribute should be a scalar (`float` or `int`), in the same physical units indicated by the ``units`` attribute. If a Measurement class is unable to make a measurement, ``value`` should be ``None``. Storing Measurement Parameters ============================== Often a measurement code is customized with parameters. As a means of lightweight provenance, the measurement API provides a way to declare these parameters so that they're persisted to the database using the :meth:`~lsst.validate.drp.base.MeasurementBase.registerParameter` method: .. code-block:: python class PA1Measurement(MeasurementBase): metric = None value = None units = 'mmag' label = 'PA1' schema = 'pa1-1.0.0' def __init__(self, numRandomShuffles=50): MeasurementBase.__init__(self) self.metric = Metric.fromYaml(self.label) self.registerParameter('numRandomShuffles', value=numRandomShuffles, units='', description='Number of random shuffles') # ... measurement code In this example, the ``PA1Measurement`` class registers a parameter named ``numRandomShuffles``. Accessing parameter values as object attributes ----------------------------------------------- In addition to registering a parameter for serialization, the :meth:`~lsst.validate.drp.base.MeasurementBase.registerParameter` method makes the values of parameters available as instance attributes. Continuing the ``PA1Measurement`` example: .. code-block:: python pa1 = PA1Measurment(numRandomShuffles=50) pa1.numRandomShuffles # == 50 Through attribute access, a parameter's value can be both *read* and *updated*. Accessing parameters as ``Datum`` objects ----------------------------------------- Although the values of parameters can be accessed through object attributes, they are stored internally as :class:`~lsst.validate.drp.base.Datum` objects. These full :class:`~lsst.validate.drp.base.Datum` objects can be accessed as items of the :attr:`~lsst.validate.drp.base.MeasurementBase.parameters` attribute: .. code-block:: python pa1.parameters['numRandomShuffles'].value # 50 pa1.parameters['numRandomShuffles'].units # '' pa1.parameters['numRandomShuffles'].label # numRandomShuffles pa1.parameters['numRandomShuffles'].description # 'Number of random shuffles' Alternative ways of registering parameters ------------------------------------------ The :meth:`~lsst.validate.drp.MeasurementBase.registerParameter` method is flexible in terms of its arguments. For example, it's possible to first register a parameter and set its value later: .. code-block:: python self.registerParameter('numRandomShuffles', units='', description='Number of random shuffles') # ... self.numRandomShuffles = 50 Here, a label is not set; in this case the ``label`` defaults to the name of the parameter itself. It's also possible to provide a :class:`~lsst.validate.drp.base.Datum` to :meth:`~lsst.validate.drp.MeasurementBase.registerParameter`: .. code-block:: python self.registerParameter('numRandomShuffles', datum=Datum(50, '', label='shuffles', description='Number of random shuffles')) This can be useful when copying a parameter already available as a :class:`~lsst.validate.drp.base.Datum`. Storing Extra Measurement Outputs ================================= Although metric measurements are strictly scalar values, it can be useful to store additional measurement by-products. By registering them, these measurement by-products are automatically serialized with the measurement and available to the SQUASH dashboard application to make drive rich plots, such as histograms or scatter plots. This additional metadata helps a user understand a scalar metric measurement. Registering measurement outputs is similar to registering parameters, except that the :meth:`~lsst.validate.drp.base.MeasurementBase.registerExtra` method is used. As an example, the PA1 measurement code (:class:`~lsst.validate.drp.calcsrd.PA1Measurement`) stores the inter-quartile range, RMS and magnitude difference of pairs of stars multiple random samples, along with mean magnitude of each pair of observed stars. .. code-block:: python class PA1Measurement(MeasurementBase): metric = None value = None units = 'mmag' label = 'PA1' schema = 'pa1-1.0.0' def __init__(self, numRandomShuffles=50): MeasurementBase.__init__(self) self.metric = Metric.fromYaml(self.label) # register extras self.registerExtra('rms', units='mmag', description='Photometric repeatability RMS of ' 'stellar pairs for each random sampling') self.registerExtra('iqr', units='mmag', description='Photometric repeatability IQR of ' 'stellar pairsfor each random sample') self.registerExtra('magDiff', units='mmag', description='Difference magnitudes of stellar source pairs' 'for each random sample') self.registerExtra('magMean', units='mag', description='Mean magnitude of pairs of stellar ' 'sources matched across visits, for ' 'each random sample.') # ... make measurements # Set values of extras self.rms = np.array([pa1.rms for pa1 in pa1Samples]) self.iqr = np.array([pa1.iqr for pa1 in pa1Samples]) self.magDiff = np.array([pa1.magDiffs for pa1 in pa1Samples]) self.magMean = np.array([pa1.magMean for pa1 in pa1Samples]) # The scalar metric measurement self.value = np.mean(self.iqr) The :meth:`~lsst.validate.drp.base.MeasurementBase.registerExtra` method works just like the :meth:`~lsst.validate.drp.base.MeasurementBase.registerParameter` method. Specifically, the value of the extra can be set at registration time. An extra can also be registered with a pre-made ``Datum`` object. Accessing and updating the values and Datum objects of measurement extras ------------------------------------------------------------------------- As with parameters, registering an extra allows the value of the extra to be accessed or updated through a measurement object attribute named after the extra itself (see the above example). Extras are stored internally as :class:`~lsst.validate.drp.base.Datum` objects, which can be accessed as items of the :attr:`~lsst.validate.drp.base.MeasurementBase.extras` attribute. Following the PA1 measurement example: .. code-block:: python pa1 = PA1Measurement() pa1.extras['rms'].value # == pa1.rms pa1.extras['rms'].units # 'mmag' pa1.extras['rms'].label # 'rms' pa1.extras['rms'].decription # 'Photometric repeatability RMS ...'